
A CARBON-13 MAGNETIC RESONANCE STUDY OF THE STEREOCHEMISTRY IN ISOMERIC 1,2,5-TRIMETHYL-4-PHENYLPIPERIDINE-4-OLS. Alan J. Jones*, A.F. Casy and K.M.J. McErlane Department of Chemistry and the Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta Edmonton, Alberta, Canada.

(Received in USA 18 February 1972; received in UK for publication 20 March 1972)

As part of our investigations concerning the application of carbon-13 magnetic resonance techniques to problems in conformational analysis^{1,2} we have studied the tertiary alcohols (1) derived from 1,2,5-trimethyl-4-piperidone^{2,3} and phenyl-lithium. Casy and McErlane⁴, following Russian work⁵, have described the isolation of three⁵ diastereoisomers from this reaction along with their proton magnetic

resonance (pmr) spectra. Initial interpretation of the pmr spectral features suggested the configuration \underline{t} -2-CH₃, \underline{c} -5-CH₃, \underline{r} -4-OH for the most abundant γ -isomer, \underline{t} -2-CH₃, \underline{t} -5-CH₃, \underline{r} -4-OH for the β -isomer and \underline{c} -2-CH₃, \underline{t} -5-CH₃, \underline{r} -4-OH for the α isomer, though significant skew-boat populations were considered to contribute in the case of the α -isomer. The carbon-13 data we report provides evidence in agreement with the configuration suggested for the γ -isomer but the alternative configurations \underline{c} -2-CH₃, \underline{t} -5-CH₃, \underline{r} -4-OH and \underline{c} -2-CH₃, \underline{c} -5-CH₃, \underline{r} -4-OH must be proposed for the β and α -isomers, respectively. The latter configurations have more recently been confirmed by X-ray analysis⁶ and the proton data may be reconciled with the new findings.

1727

The carbon-13 data obtained for the γ,β and α -isomers and their corresponding hydrochlorides for solutions in deuterochloroform⁷ are given in Table I. Assignment of the resonances to individual carbon atoms was made using additivity relationships derived for the 4-piperidones and by comparison with data for a variety of related compounds including the 3-methyl analogues (2) (α - and β prodinol, see Table II), whose stereochemistry has been established.⁸ The additive effects noted in the 4-piperidones upon protonation² were correspondingly noted in these systems and helped confirm the assignments.

TABLE	I
-------	---

Isomer	Carbon Position ^a C-2 C-3 C-4 C-5 C-6 C-1' C-2' C-5' C-q C- <u>m</u> C- <u>p</u>											
	C-2	C-3	C-4	C-5	C-6	c-1'	C-2'	C-5'	C-g	<u>c-o</u>	<u>c-m</u>	с- <u>р</u>
Y	54.80	42.82	74.75	39.4 ₈	60.0 ₈	49.62	20.17	11.97	147.24	128.25	124.9 ₁	126.63
γ-hydro chloride	57.6 ₀	40.67	^{72.9} 2	37.75	57.6 ₀	45.5 ₄	16.94	11.54	144.65	128.3 ₆	124.9	127.17
β	57.2 ₅	42.57	74.94	42.57	60.4 ₈	47.3 ₂	20.66	14.46	144.92	127.66	127.33	126.85
ß-hydrochloride ^b	60.1 ₁	40.74	72.25	40.3 ₀	59.0 ₈	47.05	17.9 ₇	14.30	142.17	^{128.3} 6	127.17	127.5 ₅
8-hydrochloride ^b	56.01	39.55	72.79	^{38.5} 2	^{59.0} 8	^{34.9} 6	15.0 ₅	12.84	145.14	128.36	125.66	127.17
α	54.49	42.3 ₅	74.78	^{38.5} 8	54.4 ₉	45.59	13.00	15.00	147.46	128.09	125.28	126.47
a-hydrochloride	56.1 ₁	40.47	72.57	38.04	50.6 ₁	41.87	13.0 ₆	11.55	145.68	128.14	125.28	126.85

a n' refers to ring atom to which substituent attached, C-q, C-o, C-m and C-p refer to phenyl ring carbons. C-o and C-m were distinguished from all other carbons by their double intensity but were not distinguished unequivocally from each other.

^b Studied as a mixture of conformers.

TABLE II												
**************************************	Carbon Position											
Compound	C-2	C-3	C-4	C5	C-6	C-1'	C-2'	C-3'	C-q	<u>c-o</u>	C- <u>m</u>	с- <u>р</u>
a-prodinol	59.0 ₈	40.79	73.38	39.44	51.69	46.29	-	12.30	^{147.4} 6	^{128.2} 5	^{124.9} 1	126.58
<pre>β-prodincl</pre>	58.1 ₄	40.23	72.70	31.5 ₀	^{51,5} 6	46.49	-	16.2 ₉	147.24	128.04	125.66	126.9 ₆

In the α - and β -prodinols it has been established⁸ that the piperidine ring adopts the chair conformation with the 4-phenyl substituent equatorial. In α prodinol the methyl group C-3' is equatorial while in β -prodinol this group is axial. The carbon-13 chemical shifts (Table II) of these isomers exhibit the similarities and differences in configuration since the methyl (C-3') carbon in the β isomer is deshielded 4 ppm by the lone pair¹ on the nitrogen and the 1,3-syn-axial interaction between the proton at C-5 and the axial methyl group results in an upfield shift (7.9 ppm) at C-5 compared with the α -isomer. The substituent shifts caused by the axial group are also clearly less⁹ as indicated by the shifts at C-2, No. 17

(-3 and C-4 in the β - compared with the α -isomer. In the N-methyl-4-piperidones² it was established that the characteristic shift for equatorial 2-methyl substituents was 21.2±0.6 ppm. In the α -prodinols^{8b} the characteristic shift for the equatorial methyl substituent (C-3') is 12.0±0.6 ppm and for the corresponding β -system the axial methyl group is characterised by the shift 15.6±0.6 ppm.

Taking the above analysis into consideration it is apparent from the observed methyl group shifts in the γ -isomer of 1,2,5-trimethyl-4-phenylpiperidin-4-ol that the C-2' and C-5' (equivalent to C-3') methyl groups are equatorial. All other shifts in this isomer agree with the configuration assigned in the pmr study⁴. In the carbon-13 spectrum of the β -isomer the absence of any appreciable shift at C-3 (syn-axial to C-5') removed the possibility that the C-5' methyl group is axial since in β -prodinol an upfield shift of 7.9 ppm was observed at this site. Furthermore, the correspondence in shifts at C-6 in the γ - and β -isomers suggests similar substitution at C-5 (β -additivity effect). The typical equatorial methyl shift of 20.7 ppm at C-2' establishes the configuration of this group. Consequently it is the orientation of the phenyl ring which must change. The upfield shift at C-g (2.4 ppm compared to the γ and α -isomers) is indicative of syn-axial interaction of this group with the protons at C-2 and C-6. However, downfield shifts of approximately 3.0 ppm are observed at C-2 and C-5 indicating ring distortion about the carbons C-3 and C-5 which would effectively reduce the steric interactions but would introduce strain into the ring. It is noteworthy that unlike the γ - and α isomers the β -isomer forms a "chair" and a "boat" conformation in equal proportions on protonation.

The shifts observed at the C-2' and C-5' methyl carbon sites in the α -isomer are most significant, though in this isomer differentiation of these resonances is less certain¹⁰. These uncertainities do not, however, preclude the observation that the C-2 methyl group is axial since not only does the methyl resonance shift upfield (syn-axial to C-6H and C-4-0H) but also a concomitant upfield shift (5.5 ppm) occurs at C-6 compared with the γ -isomer. The magnitude of the latter shift is lower than noted at C-5 in β -prodinol but coupled with the observation that the N-methyl group, C-1', moves upfield (4.0 ppm, due to increased steric interaction with C-2') suggests ring flattening over these sites. Furthermore, the negligible shift at C-3 in the α -isomer compared with the corresponding sites in β -prodinol again suggests that the methyl group C-5' is equatorial. The similarity in shifts for the phenyl ring carbon atom C-q in the γ - and α -isomers provides evidence for the equatorial configuration of the phenyl group.

We conclude that the β - and α -isomers are in distorted chair conformations with configurations <u>c</u>-2-CH₃, <u>t</u>-5-CH₃, <u>r</u>-4-OH and <u>c</u>-2-CH₃, <u>c</u>-5-CH₃, <u>t</u>-4-OH, respectively. We suggest that the above analysis indicates the significant contribution that carbon-13 magnetic resonance can make to the solution of structural problems involving conformation and configuration.

Acknowledgements: This work was supported in part by the National Research Council of Canada, Grant Number A6416.

REFERENCES

- A.J. Jones, E.L. Eliel, D.M. Grant, M.C. Knoeber and W.F. Bailey, <u>J. Amer.</u> Chem. Soc., <u>93</u>, 4772, (1971).
- 2. A.J. Jones and M.M.A. Hassan, J. Org. Chem., in press.
- 3. M.M.A. Hassan and A.F. Casy, Org. Magn. Resonance, 2, 197, (1970).
- 4. A.F. Casy and K.M.J. McErlane, J. Chem. Soc., C, in press.
- N.S. Prostakov and N.N. Mikheeva, <u>Russ. Chem. Rev.</u>, <u>31</u>, 556 (1962); a fourth isomer (δ) has been described by N.I. Shvetsov and V.F. Kucherov, <u>Doklady Akad</u>. <u>Nauk S.S.S.R.</u>, <u>126</u>, 1017, (1959).
- F.R. Ahmed and W.H. DeCamp, <u>Chem. Commun.</u>, 1102, (1971); W.H. DeCamp, personal communication.
- All spectra were determined in the Fourier transform mode using a Bruker HFX-90 spectrometer operating at 22.63MHz.
- 8. (a) A.F. Casy, <u>Tetrahedron</u>, <u>22</u>, 2711, (1966), <u>idem.</u>, <u>J. Medicin. Chem.</u>, <u>11</u>, 188 (1968).
 (b) Details of the carbon-13 spectra of these compounds and their derivatives will be published elsewhere.
- 9. D.K. Dalling and D.M. Grant, <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 6612, (1967), report lower substituent effects for axial compared with equatorial substituents in the methylcyclohexanes.
- 10. The assignments of the methyl resonances given in Table I are based on the observation that in the asymmetric compound 1,2,6-trimethyl-4-phenyl-piperidin-4-ol shifts at 13.5 and 13.7 ppm in the free base and hydrochloride, respectively, are attributable to the axial 2-methyl group.